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Abstract

Ž .A relationship between supramolecular chemistry and stepwise coupling polymerization SCP found by our group is briefly
described. By SCP reaction a series of new kinds of microstructure-controlled polymers and their corresponding supramolecular

Ž . Ž . Ž .inclusions such as: 1 reactive ladder-like polysiloxanes LPS ; 2 liquid crystalline ladder-like polysiloxanes and their metal complexes
Ž . Ž . Ž . Ž .including fishbone-like LCPs FBLCPs and their metal complexes M-FBLCPs and rowboat-like LCPs RBLCPs ; 3 tubular polymers

Ž . Ž . Ž . Ž .TPs and their supramolecular inclusions TPIs and 4 sieve-plate-like network polymers SNPs and their supramolecular clathrates
Ž .SNPC have been successfully prepared. It is reasonably stated that SCP is a supramolecular interaction-aided reaction and moreover,
SCP is an effective method to generate new supramolecules. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction to SCP reaction

Ž .The stepwise coupling polymerization SCP reaction
route is illustrated in Fig. 1, which is given in some

w xreviews on SCP elsewhere 1–4 . A tetrafunctional silicon
Ž . Ž .compound, A,B,C,D Si, a , where A,B,C,D represent

four different reactive groups linking to Si-atom, respec-
tively, is chosen as starting monomer. A bridged interme-

Ž .diate b is first obtained by the reaction of monomer
Ž . ŽSi A,B,C,D with a ,v-coupling agent abbreviated as

.a ,v-C

Ž .Then, in the second step, a ladder-like oligomer C or
Ž X. Ž .polymer C , LPS , is formed by the reaction of the

Ž . Ž .intermediate b with another a ,v-C
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If the LPS is of cis-isotactic configuration, a tubular
Ž .polymer, TP d , can be prepared. Alternatively, if the LPS

is of non-cis-isotactic such as cis-syndiotactic configura-
Ž .tion, a sieve-plate network polymer, SNP e , can be

obtained by further coupling with

Moreover, suitable rod-like or sphere-like molecules can
be entrapped into the pores of TP or SNP as guest by in
situ tube-closure reaction to form the corresponding supra-

Ž .molecular inclusions TPIs . Obviously, the molecular
recognition ability featuring the shape, size and chemical
affinity of these different multi-dimensional and structure-
ordered polymers can be controlled by choosing the

Ž . Ž .monomers Si A,B,C,D with different groups A,B,C,D
Ž . Ž .with different groups A,B,C,D and appropriate a ,v-C s.

2. The new microstructure-controlled polymers pre-
pared by SCP

( )2.1. ReactiÕe ladder-like polysilsesquioxanes LPS

w xAs early as in 1960s, Brown et al. 5,6 first prepared
Žsoluble, ladder-like polyphenylsilsesquioxane abbreviated
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Fig. 1. Stepwise coupling polymerization.

.as Ph-T instead of the usual insoluble random network
polymers by ‘‘equilibration polymerization’’ using the tri-

Ž .functional monomer phenyltrichlorosilane . But, this
method cannot be used to synthesize reactive LPS such as

Ž . Žladder-like polyhydrosilsesquioxane H-T or polyvinyl or
. Ž .allyl silsesquioxane Vi-T or A-T due to the harsh reac-

Ž .tion conditions used at 2508C in the presence of KOH .
We designed the so-called ‘‘SCP’’ to prepare a series of

Ž . w xLPS including polymethylsilsesquioxane Me-T 7,8 ,
w x w xPh-T 9 , especially, reactive H-T 10,11 , allyl-T or Vi-T

w x Ž . w x12 , polyestersilsesquioxane E-T 13 , polyalkyl-
w xsilsesquioxane 14 and ladder polyphenylene-bridged

w xsiloxanes 15 .
A proposed route for the supramolecular H-bonding-as-

sisted synthesis of LPS is shown in Fig. 2. By preaminoly-
Ž .sis of trichlorosilane with a ,v-C , p-phenylenediamine

Ž .PDA , which is one kind of SCP, the bridged intermediate
Ž .1 was first obtained, which is then hydrolyzed to form

Ž .intermediate 2 . Its OH-groups can form planar
w xhydrogen-bonds suggested by Kakudo and Watase 16 ,

w x w xKakudo et al. 17 and Kasai and Kakudo 18 . Because of
the existence of tetrahedral configuration of the Si-atom

Ž .and through the H-bonding interaction the compound 2
can be self-assembled to generate the cis-isotactic

Ž . Ž .oligomeric bridge aggregate 3 and oligomer 4 . Next,
Ž .the bridge of 4 is hydrolyzed and further condensed to

Ž . Ž .form intermediate 5 and finally the title polymer 6 with
regular ladder-like skeleton.

2.2. Mesomorphic ladder-like polysiloxanes: fishbone-like
( )and rowboat-like LCPs FBLCPs and RBLCPs

The first side-chain liquid crystalline polysiloxane
Ž .SCLCP was prepared by Finkelmann and Rehage in

w x1980 19 . To explore mesomorphic ladder-like polymers,
Ž .two new kinds of LCPs, so-called ‘‘fishbone-like’’ FB

w x Ž . w x20–25 and ‘‘rowboat-like’’ RB LCPs 26,27 have been
synthesized by linking the mesogenic groups onto the

Ž .ladder-like main chain in manner of terminally end-on or
Ž .laterally side-on fixing.

The FBLCPs and their metal complexes possess much
higher clearing points and wider mesophase ranges by ca.
2008C compared to the corresponding SCLCP with a
single main chain. Also, the RBLCP-based second har-

Ž .monic generation non-linear optical SHGrNLO film ex-
hibits low decay SHG property. This is attributed to the
ordered supermolecular assembly stabilized by the semi-
rigid ladder-like main chain.

The major applied exploration of LPS-based LCPs is
Žrelated to the photo-active alignment layers command

.surface and pretilt angle-adjustable alignment films with
Ž . w xstable and high pretilt angle ;118 28–32 .

2.3. Tubular polymers and their supramolecular inclusions

The first synthetic organic TPs, polycyclodextrins, were
w xreported by Harada et al. in 1993 33 . The pore sizes of
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Fig. 2. A proposed mechanism on the LPS formation.

the TPs are dependent on those of the natural products, a ,
b or g-cyclodextrins. To synthesize microstructure-con-
trollable TP the reactive cis-isotactic LPSs are the ideal
candidate building blocks. The TPs can be prepared by
Ž . Ž .1q1 or 2q2 ways. The former represents that the
cross-section of the TP formed consists of a structural unit
of one kind of reactive cis-isotactic ladder-like macro-

molecule such as Vi-T or allyl-T, and of a structural unit
of another kind of reactive, cis-isotactic ladder-like macro-
molecule such as H-T. The second way represents that the
cross-section of the TP formed consists of two structural
units of one kind of reactive, cis-isotactic ladder-like
macromolecule such as Vi-T, allyl-T or H-T and two
structural units of another kind of reactive a ,v-coupling
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Fig. 3. A proposed ‘‘zipping’’ model for TP formation.

Ž .agents such as 1,1,3,3-tetramethyldisiloxane H-MM or
Ž .1,1,3,3-tetramethyldivinyl-disiloxane V-MM . To make

the tube-formation reaction complete, the Pt complex-
Ž .catalyzed hydrosilylation is used. For example, A TP is

Ž .prepared by the reaction of ladder-like Vi-T with H-MM
Ž .using dicyclopentadienyl-dichloroplatinium Cp PtCl2 2

Ž . w xcatalyst in tetrahydrofuran THF 34,35 , which is charac-
Ž . 1 13terized by infrared spectroscopy IR , H NMR, C NMR

29 Ž .Si NMR, differential scanning calorimetry DSC , X-ray

Ž .diffraction method, gel permeation chromatography GPC ,
Ž .vapour pressure osmometry VPO , atomic force mi-

Ž .croscopy AFM and corroborated by molecular simula-
tion. These results prove that the product obtained contains
a nano-scale tubular structure with the outside diameter
F s1 nm and inside diameter F s0.7 nm.o i

A supramolecular tubular polysiloxane inclusion, TPI,
has been also prepared by in situ tube-closure and entrap-
ping rod-like Schiff-base liquid crystal molecule, p-

Fig. 4. Proposed mechanism for preparation of the SNPrNPP supramolecular clathrate film.
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X Ž .butoxybenzylidene-p -dodecoxyaniline BBDA within the
w xpore of TP 36,37 . Investigation by polarized light mi-

Ž .croscopy PLM , DSC, IR, AFM and molecular simulation
gives a preliminary support to the existence of the title
supramolecular inclusion.

Ž .A proposed 1q1 way of a zipping mechanism for the
construction of TP from Vi-T and H-T is shown in Fig. 3.

2.4. SieÕe-plate-like network polymers and their supra-
( )molecular clathrates SNPC

This work is related to preparation of SHGrNLO poly-
mer. In general physical bending the chromophoric
molecules are dispersed within the pores of crosslinking

Ž 2 – 5 .polymer at molecular aggregate ca. 10 molecules . So,
the SHGrNLO property is rather low such as fast decay of
the signal, inferior NLO activity and poor mechanical
behavior. A novel SHGrNLO, self-assembling cross-

Ž y7linking film with high SHG coefficient d s2=1033
.esu by IR diehroism was prepared by molecular design

w xand ‘‘in situ poling and sol–gel process’’ 38–40 . In the
Ž . Ž . Ž .presence of a NLO chromophore S - y -1- 4 -

Ž .nitrophenyl-2-pyrrolidinemethanol NPP , a designed
Ž .organo-bridged monomer, bis- 1,4-allyloxybenzene tri-

methoxysilane was synthesized and hydrolyzed to form a
ladder polysiloxane, to which NPP molecules were self-as-
sembled by H-bonding. Then the ladder polymer was
further condensed to produce a SHGrNLO film con-
structed with a sieve-plate silicone gel and NPPs en-
trapped. The content of NPP is a high as 50 mol% in
comparison with 25 mol% of general blending. A proposed
mechanism for the formation of this low-decay SHGrNLO
supramolecular clathrate film is shown in Fig. 4 where the
self-assembly of NPP by H-bonding is clearly illustrated.

3. Preliminary conclusion

The SCP is a supramolecular interaction-assisted reac-
tion. The supramolecular interactions include the hydro-
gen-bonding, transition-metal ion-ligand coordination van
der Waals force . . . and so on, which play an important role
to control the microstructures including the stereochemical
configuration and the shape, size of the pore of the poly-
mers. Moreover, the SCP reaction can be employed to
prepare supramolecular systems such as ladder-like liquid
crystalline polymers and their metal complexes, and nu-
merous inclusions of well-defined structure polymer and
functional molecules entrapped in it.
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